Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity hinders efficiency and scalability, especially for long-context processing. A promising approach is to leverage sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics at the attention head level, struggling to adapt dynamically to different contexts efficiently. We propose SeerAttention, a simple yet effective attention mechanism that directly learns the block-level attention sparsity from the LLM itself. Inspired by the gating mechanism in Mixture of Experts (MoE), SeerAttention augments the conventional attention with a learnable gate that selectively activates important blocks within the attention map. Specifically, the gate first pools the query (Q) and key (K) tensors along the sequence dimension and processes them through learnable linear layers. The resulting matrices are then multiplied together to produce the gating scores, which are used to predict block-level attention sparsity. Combined with our block-sparse FlashAttention kernel, SeerAttention can achieve significant speedup on GPUs. When applied to pre-trained LLMs, SeerAttention only requires training the gate parameters in a lightweight self-distillation manner, allowing rapid convergence. Our evaluation results demonstrate that SeerAttention achieves better model accuracy and lower latency for long-context pre-filling compared to prior methods.